从宏观的角度来讲,人工智能的历史按照所使用的方法,可以分为两个阶段,分水岭大概在1986年神经网络的回归。在前半段历史中,我们主要使用的方法和思路是基于规则的方法,也就是我们试图找到人类认知事物的方法,模仿人类智能和思维方法,找到一套方法,模拟出人类思维的过程,解决人工智能的问题。后半段的历史,也就是我们现在所处的这个时期,我们主要采取的方法是基于统计的方法,也就是我们现在发现,有的时候我们不需要把人类的思维过程模拟出一套规则来教给计算机,我们可以在一个大的数量集里面来训练计算机,让它自己找到规律从而完成人工智能遇到的问题。这个转化也可以用一个形象的例子来描述,就像我们想造出飞机,就观察鸟是怎么样飞的,然后模仿鸟的动作就行,不需要什么空气动力学什么的,这种思想在人类历史上也被称为“鸟飞派”。但是我们都知道,怀特兄弟造出飞机靠的是空气动力学,而不是仿生学。不过我们不能就因为这一点就笑话人工智能前半段各位研究人员和前辈的努力和心血,因为这是人类认知事物的普遍规律,其实现在也有不少人会认为,计算机可以读懂文字、看懂图片靠的是依靠和我们人类一样的认知过程。在研究基于规则的探索中,人工智能经历了三个主要阶段——兴起、繁盛和萧条。会有这样的过程,一个重要原因是基于规则方法的局限性。上海中科智谷人工智能工业研究院于2016年成立,是以中国科学院自动化所、复旦大学为核心力量发起的从事人工智能及相关产业领域的研发、产学研转化及传统企业转型升级的独立研究组织。