数学之神"——阿基米德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作***只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
一个著名的故事是:叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银子,便请阿基米德鉴定一下。当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。阿基米德高兴得跳起来,赤身奔回家中,口中大呼:『尤里卡!尤里卡』』〔希腊语enrhka,意思是『我找到了』〕他将这一流体静力学的基本原理,即物体在液体中的减轻的重量,等于排去液体的重量,总结在他的名着《论浮体》〔On Floating Bodies〕中,后来以『阿基米德原理』著称于世。
公元前212年罗马军队攻入叙拉古,并闯入阿基米德的住宅,看见一位老人在地上埋头作几何图形,士兵将图踩坏。阿基米德怒斥士兵:『不要弄坏我的图!』士兵拔出短剑,刺死了这位旷世绝伦的大科学家,阿基米德竟死在愚蠢无知的罗马士兵手里。 他的生平没有详细记载,但关于他的许多故事却广为流传。据说他确立了力学的杠杆定理之后,曾发出豪言壮语:『给我一个立足点,我就可以移动这个地球!』,被誉为『力学之父』。
《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
解析几何的创始人——笛卡尔
雷勒·笛卡尔,1596年3月31日生于法国西部都兰群拉哈小城的一个贵族家庭。他从小身体孱弱,但好奇心强,勤学好问。8岁的时候,笛卡尔就被送进当时全欧洲著名的教会学校——拉夫雷士耶稣会学校。校长非常喜欢笛卡尔,为了照顾他孱弱的身体,特许他不必到校上早课,可以在床上自学。正是由于这个机会,笛卡尔利用每天早晨在床上自学的时间,阅读了大量数学、哲学等书籍,为后来他在数学和哲学上非凡的成就打下了坚实的基础。
笛卡尔毕业以后,又到普瓦蒂埃大学获得了法学博士学位。接着就去了巴黎当律师。由于厌烦巴黎花花世界的生活,笛卡尔躲避到巴黎僻静的郊区专心研究几何学。这时的笛卡尔已经结识了当时不少有名的数学家如迈多治、梅森等人,并经常在一起钻研数学。笛卡尔不满足于书本知识,决心要走向社会,去读世界这本大书。1617年,青年的笛卡尔投身军队,投入到社会当中,去寻求他自己所需要的科学。在随军的旅行中,笛卡尔还在专心致志地思考着他的数学与哲学问题。他已不满意欧几里得几何学和当时的代数学,他自己想去寻找另外一种包括这两门科学的优点而没有它们的缺点的方法。昼有所思,夜有所悟。1619年11月10日的夜晚,笛卡尔连续作了3个奇特的梦。第一个梦是:自己被风暴从教堂和学校驱逐到风力吹不到的地方;第二个梦是:自己得到了打开自然宝库的魔钥;第三个梦是:自己背诵奥生尼的诗句“我应该沿着哪条人生之路走下去?”。正是因为这三个梦,笛卡尔明确了自己的人生之路,可以这样说,这一天是笛卡尔一生中思想上的转折点。因而有人说,笛卡尔梦中的“魔钥”就是建立解析几何的线索。事实上,笛卡尔试图用分析的方法解决“巴普士问题”是导致他发现解析几何原理的触发原因。
此外,在笛卡尔的手稿中还发现他于1639年就已掌握了欧拉1750发表的凸多面体的棱数、面积的顶数三者之间的数量关系:顶数-棱数+面数=2,这是图论中的定理。
笛卡尔在钻研数学和哲学的同时,还思考着多种自然哲学,如力学、光学、生物学、气象学、天文学乃至音乐。在这些方面的研究成就,也是卓越的。虽然后来终因笛卡尔的学说抵毁教义而遭教会的迫害,但是,笛卡尔的哲学与数学思想影响是深远的,历史不会忘记这位划时代的杰出数学家的。
笛卡儿生在一个富有律师的家庭,自幼身体柔弱,父母允许他在床上作功课,久而久之就形成习惯,之后,他一辈子都是这样。20岁毕业于Poityers 大学法律系,之后,前往巴黎跟Mydorde和Mersenne学了一年数学,由于解决了荷兰Bredas广告牌上的一道难题,而信心大增,从此认真学习数学、研究数学。
他由哲学家、自然界、科学应用来看数学,他认为数学的伟大在于其证明所依据的公理是无缺点的,数学是获得确定和有效证明的方法,而且数学是形而上的。他说:「数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。」 笛卡儿说:「希腊几何太过抽象,他只是用来训练了解,使想象力大为疲劳的工具罢了!而代数太过于遵守原则和公式,计算过于繁杂,不是一门改良心智的科学。」
牛顿(1642-1727),英国物理学家、数学家。曾任英国皇家学会会长
牛顿是举世公认的、有史以来最伟大的科学家之一。他的幼年充满了辛酸,在他出生前3个月父亲便去世了,之后母亲改嫁,他是由外祖母抚养成人的。23毕业于著名的剑桥大学后留校工作。后因逃避伦敦流行的鼠疫来到母亲的农场里。在这里,他被一个常人熟视无睹的现象吸引住了。有一次,他看到一个熟透了的苹果落在地上,便开始思索为什么苹果会垂直落在地上,而不是飞到天上去呢?一定是有一种力在拉它,那么这种将苹果往下拉的力会不会控制月球?他就是通过这个看起来十分简单的现象,发现了著名的万有引力定律。这个定律的巨大作用,很快就显示了出来。它解释了当时所知道的天体的一切运动。同时,牛顿又完成了一项重要的光学实验,从而证明了白光是由以赤、橙、黄、绿、青、蓝、紫的顺序排列的合成光。1687年,牛顿出版了有史以来最伟大的科学著作<<自然哲学的数学原理>>。在这里,他钻研了伽利略的理论,并归纳出著名的运动三大定律。除此之外,他发现的二项式定理,在数学界也有一席之地。1704年,出版<<光学>>一书,总结了他对光学研究的成果。
牛顿61岁那年被选为英国皇家学会会长,此后年年连任直至逝世。作为举世公认的、最卓越的科学巨匠,他仍谦逊地说:"如果说我比别人看得远些,那是因为我站在了巨人的肩上。"1727年3月20日,84岁的牛顿逝世了。作为有功于国家的伟人,他被葬在了英国国家公墓,受到世人的瞻仰。
少年牛顿
1643年1月4日,在英格兰林肯郡小镇沃尔索浦的一个自耕农家庭里,牛顿诞生了。牛顿是一个早产儿,出生时只有三磅重,接生婆和他的亲人都担心他能否活下来。谁也没有料到这个看起来微不足道的小东西会成为了一位震古烁今的科学巨人,并且竟活到了85岁的高龄。
牛顿出生前三个月父亲便去世了。在他两岁时,母亲改嫁给一个牧师,把牛顿留在外祖母身边抚养。11岁时,母亲的后夫去世,母亲带着和后夫所生的一子二女回到牛顿身边。牛顿自幼沉默寡言,性格倔强,这种习性可能来自它的家庭处境。
大约从五岁开始,牛顿被送到公立学校读书。少年时的牛顿并不是神童,他资质平常,成绩一般,但他喜欢读书,喜欢看一些介绍各种简单机械模型制作方法的读物,并从中受到启发,自己动手制作些奇奇怪怪的小玩意,如风车、木钟、折叠式提灯等等。
传说小牛顿把风车的机械原理摸透后,自己制造了一架磨坊的模型,他将老鼠绑在一架有轮子的踏车上,然后在轮子的前面放上一粒玉米,刚好那地方是老鼠可望不可及的位置。老鼠想吃玉米,就不断的跑动,于是轮子不停的转动;又一次他放风筝时,在绳子上悬挂着小灯,夜间村人看去惊疑是彗星出现;他还制造了一个小水钟。每天早晨,小水钟会自动滴水到他的脸上,催他起床。他还喜欢绘画、雕刻,尤其喜欢刻日晷,家里墙角、窗台上到处安放着他刻画的日晷,用以验看日影的移动。
牛顿12岁时进了离家不远的格兰瑟姆中学。牛顿的母亲原希望他成为一个农民,但牛顿本人却无意于此,而酷爱读书。随着年岁的增大,牛顿越发爱好读书,喜欢沉思,做科学小实验。他在格兰瑟姆中学读书时,曾经寄宿在一位药剂师家里,使他受到了化学试验的熏陶。
牛顿在中学时代学习成绩并不出众,只是爱好读书,对自然现象由好奇心,例如颜色、日影四季的移动,尤其是几何学、哥白尼的日心说等等。他还分门别类的记读书笔记,又喜欢别出心裁的作些小工具、小技巧、小发明、小试验。
当时英国社会渗透基督教新思想,牛顿家里有两位都以神父为职业的亲戚,这可能影响牛顿晚年的宗教生活。从这些平凡的环境和活动中,还看不出幼年的牛顿是个才能出众异于常人的儿童。
后来迫于生活,母亲让牛顿停学在家务农,赡养家庭。但牛顿一有机会便埋首书卷,以至经常忘了干活。每次,母亲叫他同佣人一道上市场,熟悉做交易的生意经时,他便恳求佣人一个人上街,自己则躲在树丛后看书。有一次,牛顿的舅父起了疑心,就跟踪牛顿上市镇去,发现他的外甥伸着腿,躺在草地上,正在聚精会神地钻研一个数学问题。牛顿的好学精神感动了舅父,于是舅父劝服了母亲让牛顿复学,并鼓励牛顿上大学读书。牛顿又重新回到了学校,如饥似渴地汲取知识
1665年初,牛顿创立级数近似法,以及把任意幂的二项式化为一个级数的规则;同年11月,创立正流数法(微分);次年1月,用三棱镜研究颜色理论;5月,开始研究反流数法(积分)。这一年内,牛顿开始想到研究重力问题,并想把重力理论推广到月球的运动轨道上去。他还从开普勒定律中推导出使行星保持在它们的轨道上的力必定与它们到旋转中心的距离平方成反比。牛顿见苹果落地而悟出地球引力的传说,说的也是此时发生的轶事。
总之,在家乡居住的两年中,牛顿以比此后任何时候更为旺盛的精力从事科学创造,并关心自然哲学问题。他的三大成就:微积分、万有引力、光学分析的思想都是在这时孕育成形的。可以说此时的牛顿已经开始着手描绘他一生大多数科学创造的蓝图。
1667年复活节后不久,牛顿返回到剑桥大学,10月1日被选为三一学院的仲院侣(初级院委),翌年3月16日获得硕士学位,同时成为正院侣(高级院委)。1669年10月27日,巴罗为了提携牛顿而辞去了教授之职,26岁的牛顿晋升为数学教授,并担任卢卡斯讲座的教授。巴罗为牛顿的科学生涯打通了道路,如果没有牛顿的舅父和巴罗的帮助,牛顿这匹千里马可能就不会驰骋在科学的大道上。巴罗让贤,这在科学史上一直被传为佳话。
伟大的成就~建立微积分
在牛顿的全部科学贡献中,数学成就占有突出的地位。他数学生涯中的第一项创造性成果就是发现了二项式定理。据牛顿本人回忆,他是在1664年和1665年间的冬天,在研读沃利斯博士的《无穷算术》时,试图修改他的求圆面积的级数时发现这一定理的。
牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。
在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。
应该说,一门科学的创立决不是某一个人的业绩,它必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样,是牛顿和莱布尼茨在前人的基础上各自独立的建立起来的。
1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如,他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”。
牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。
伟大的成就~对光学的三大贡献
在牛顿以前,墨子、培根、达·芬奇等人都研究过光学现象。反射定律是人们很早就认识的光学定律之一。近代科学兴起的时候,伽利略靠望远镜发现了“新宇宙”,震惊了世界。荷兰数学家斯涅尔首先发现了光的折射定律。笛卡尔提出了光的微粒说……
牛顿以及跟他差不多同时代的胡克、惠更斯等人,也象伽利略、笛卡尔等前辈一样,用极大的兴趣和热情对光学进行研究。1666年,牛顿在家休假期间,得到了三棱镜,他用来进行了著名的色散试验。一束太阳光通过三棱镜后,分解成几种颜色的光谱带,牛顿再用一块带狭缝的挡板把其他颜色的光挡住,只让一种颜色的光在通过第二个三棱镜,结果出来的只是同样颜色的光。这样,他就发现了白光是由各种不同颜色的光组成的,这是第一大贡献。
牛顿为了验证这个发现,设法把几种不同的单色光合成白光,并且计算出不同颜色光的折射率,精确地说明了色散现象。揭开了物质的颜色之谜,原来物质的色彩是不同颜色的光在物体上有不同的反射率和折射率造成的。公元1672年,牛顿把自己的研究成果发表在《皇家学会哲学杂志》上,这是他第一次公开发表的论文。
许多人研究光学是为了改进折射望远镜。牛顿由于发现了白光的组成,认为折射望远镜透镜的色散现象是无法消除的(后来有人用具有不同折射率的玻璃组成的透镜消除了色散现象),就设计和制造了反射望远镜。
牛顿不但擅长数学计算,而且能够自己动手制造各种试验设备并且作精细实验。为了制造望远镜,他自己设计了研磨抛光机,实验各种研磨材料。公元1668年,他制成了第一架反射望远镜样机,这是第二大贡献。公元1671年,牛顿把经过改进得反射望远镜献给了皇家学会,牛顿名声大震,并被选为皇家学会会员。反射望远镜的发明奠定了现代大型光学天文望远镜的基础。
同时,牛顿还进行了大量的观察实验和数学计算,比如研究惠更斯发现的冰川石的异常折射现象,胡克发现的肥皂泡的色彩现象,“牛顿环”的光学现象等等。
牛顿还提出了光的“微粒说”,认为光是由微粒形成的,并且走的是最快速的直线运动路径。他的“微粒说”与后来惠更斯的“波动说”构成了关于光的两大基本理论。此外,他还制作了牛顿色盘等多种光学仪器。
伟大的成就~构筑力学大厦
牛顿是经典力学理论的集大成者。他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了著名的万有引力定律和牛顿运动三定律。
在牛顿以前,天文学是最显赫的学科。但是为什么行星一定按照一定规律围绕太阳运行?天文学家无法圆满解释这个问题。万有引力的发现说明,天上星体运动和地面上物体运动都受到同样的规律——力学规律的支配。
早在牛顿发现万有引力定律以前,已经有许多科学家严肃认真的考虑过这个问题。比如开普勒就认识到,要维持行星沿椭圆轨道运动必定有一种力在起作用,他认为这种力类似磁力,就像磁石吸铁一样。1659年,惠更斯从研究摆的运动中发现,保持物体沿圆周轨道运动需要一种向心力。胡克等人认为是引力,并且试图推到引力和距离的关系。
1664年,胡克发现彗星靠近太阳时轨道弯曲是因为太阳引力作用的结果;1673年,惠更斯推导出向心力定律;1679年,胡克和哈雷从向心力定律和开普勒第三定律,推导出维持行星运动的万有引力和距离的平方成反比。
牛顿自己回忆,1666年前后,他在老家居住的时候已经考虑过万有引力的问题。最有名的一个说法是:在假期里,牛顿常常在花园里小坐片刻。有一次,象以往屡次发生的那样,一个苹果从树上掉了下来……
一个苹果的偶然落地,却是人类思想史的一个转折点,它使那个坐在花园里的人的头脑开了窍,引起他的沉思:究竟是什么原因使一切物体都受到差不多总是朝向地心的吸引呢?牛顿思索着。终于,他发现了对人类具有划时代意义的万有引力。
牛顿高明的地方就在于他解决了胡克等人没有能够解决的数学论证问题。1679年,胡克曾经写信问牛顿,能不能根据向心力定律和引力同距离的平方成反比的定律,来证明行星沿椭圆轨道运动。牛顿没有回答这个问题。1685年,哈雷登门拜访牛顿时,牛顿已经发现了万有引力定律:两个物体之间有引力,引力和距离的平方成反比,和两个物体质量的乘积成正比。
当时已经有了地球半径、日地距离等精确的数据可以供计算使用。牛顿向哈雷证明地球的引力是使月亮围绕地球运动的向心力,也证明了在太阳引力作用下,行星运动符合开普勒运动三定律。
在哈雷的敦促下,1686年底,牛顿写成划时代的伟大著作《自然哲学的数学原理》一书。皇家学会经费不足,出不了这本书,后来靠了哈雷的资助,这部科学史上最伟大的著作之一才能够在1687年出版。
牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,不但从数学上论证了万有引力定律,而且把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。
站在巨人的肩上
牛顿的研究领域非常广泛,他除了在数学、光学、力学等方面做出卓越贡献外,他还花费大量精力进行化学实验。他常常六个星期一直留在实验室里,不分昼夜的工作。他在化学上花费的时间并不少,却几乎没有取得什么显著的成就。为什么同样一个伟大的牛顿,在不同的领域取得的成就竟那么不一样呢?
怪异的牛顿
牛顿并不善于教学,他在讲授新近发现的微积分时,学生都接受不了。但在解决疑难问题方面的能力,他却远远超过了常人。还是学生时,牛顿就发现了一种计算无限量的方法。他用这个秘密的方法,算出了双曲面积到二百五十位数。他曾经高价买下了一个棱镜,并把它作为科学研究的工具,用它试验了白光分解为的有颜色的光。
开始,他并不愿意发表他的观察所得,他的发现都只是一种个人的消遣,为的是使自己在寂静的书斋中解闷,他独自遨游于自己所创造的超级世界里。后来,在好友哈雷的竭力劝说下,才勉强同意出版他的手稿,才有划时代巨著《自然哲学的数学原理》的问世。
作为大学教授,牛顿常常忙得不修边幅,往往领带不结,袜带不系好,马裤也不纽扣,就走进了大学餐厅。有一次,他在向一位姑娘求婚时思想又开了小差,他脑海了只剩下了无穷量的二项式定理。他抓住姑娘的手指,错误的把它当成通烟斗的通条,硬往烟斗里塞,痛得姑娘大叫,离他而去。牛顿也因此终生未娶。
牛顿从容不迫地观察日常生活中的小事,结果作出了科学史上一个个重要的发现。他马虎拖沓,曾经闹过许多的笑话。一次,他边读书,边煮鸡蛋,等他揭开锅想吃鸡蛋时,却发现锅里是一只怀表。还有一次,他请朋友吃饭,当饭菜准备好时,牛顿突然想到一个问题,便独自进了内室,朋友等了他好久还是不见他出来,于是朋友就自己动手把那份鸡全吃了,鸡骨头留在盘子,不告而别了。等牛顿想起,出来后,发现了盘子里的骨头,以为自己已经吃过了,便转身又进了内室,继续研究他的问题。
牛顿晚年
但是由于受时代的限制,牛顿基本上是一个形而上学的机械唯物主义者。他认为运动只是机械力学的运动,是空间位置的变化;宇宙和太阳一样是没有发展变化的;靠了万有引力的作用,恒星永远在一个固定不变的位置上……
随着科学声誉的提高,牛顿的政治地位也得到了提升。1689年,他被当选为国会中的大学代表。作为国会议员,牛顿逐渐开始疏远给他带来巨大成就的科学。他不时表示出对以他为代表的领域的厌恶。同时,他的大量的时间花费在了和同时代的著名科学家如胡克、莱布尼兹等进行科学优先权的争论上。
晚年的牛顿在伦敦过着堂皇的生活,1705年他被安妮女王封为贵族。此时的牛顿非常富有,被普遍认为是生存着的最伟大的科学家。他担任英国皇家学会会长,在他任职的二十四年时间里,他以铁拳统治着学会。没有他的同意,任何人都不能被选举。
晚年的牛顿开始致力于对神学的研究,他否定哲学的指导作用,虔诚地相信上帝,埋头于写以神学为题材的著作。当他遇到难以解释的天体运动时,竟提出了“神的第一推动力”的谬论。他说“上帝统治万物,我们是他的仆人而敬畏他、崇拜他”。
1727年3月20日,伟大艾萨克·牛顿逝世。同其他很多杰出的英国人一样,他被埋葬在了威斯敏斯特教堂。他的墓碑上镌刻着:
让人们欢呼这样一位多么伟大的
人类荣耀曾经在世界上存在。
瑞士数学家及自然科学家欧拉(Euler
欧拉(Euler),(1707——1783),瑞士数学家及自然科学家。在1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国的彼得堡去逝。欧拉出生於牧师家庭,自幼已受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。
欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一.伯努利的特别指导,专心研究数学,直至18岁,他彻底的放弃当牧师的想法而专攻数学,於19岁时(1726年)开始创作文章,并获得巴黎科学院奖金。
1727年,在丹尼尔.伯努利的推荐下,到俄国的彼得堡科学院从事研究工作。并在1731年接替丹尼尔第一。伯努利,成为物理学教授。
在俄国的14年中,他努力不懈地投入研究,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府的要求,解决了不少如地图学、造船业等的实际问题。1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士腓特烈大帝的邀请到德国科学院担任物理数学所所长一职。他在柏林期间,大大的扩展了研究的内容,如行星运动、刚体运动、热力学、弹道学、人口学等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何及其他数学领域均有开创性的发现。