高斯的祖父是农民,父亲除了从事园艺的工作外,也当过各色
各样的杂工,如护堤员、建筑工等等。父亲由於贫穷,本身没有受
过什麼教育。
母亲在三十四岁时才结婚,三十五岁生下了高斯。她是一名石
匠的女儿,有一个很聪明的弟弟,他手巧心灵是当地出名的织绸能
手,高斯的这位舅舅,对小高斯很照顾,有机会就教育他,把他所
知道的一些知识传授给他。而父亲可以说是一名”大老粗”,认为
只有力气能挣钱,学问对穷人是没有用的。
高斯在晚年喜欢对自己的小孙儿讲述自己小时候的故事,他说
他在还不会讲话的时候,就已经学会计算了。
他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工
人们的周薪。父亲在喃喃的计数,最后长叹的一声表示总算把钱算
出来。
父亲念出钱数,准备写下时,身边传来微小的声音:「爸爸!
算错了,钱应该是这样.....。」
父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地
方是没有人教过高斯怎麼样计算,而小高斯平日靠观察,在大人不
知不觉时,他自己学会了计算。
另外一个著名的故事亦可以说明高斯很小时就有很快的计算能
力。当他还在小学读书时,有一天,算术老师要求全班同学算出以
下的算式:
1 + 2 + 3 + 4 + ....+ 98 + 99 + 100 = ?
在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答
案5050,而其他孩子算到头昏脑胀,还是算不出来。最后只有高斯
的答案是正确无误。
原来 1 +100= 101
2 + 99 = 101
3 + 98 = 101
.
.
.
50 + 51 = 101
前后两项两两相加,就成了50对和都是 101的配对了
即 101 × 50 = 5050。
按:今用公式
表示 1 + 2 + ... + n
高斯的家里很穷,在冬天晚上吃完饭后,父亲就要高斯上
床睡觉,这样可以节省燃料和灯油。高斯很喜欢读书,他往往
带了一捆芜菁上他的顶楼去,他把芜菁当中挖空,塞进用粗棉
卷成的灯芯,用一些油脂当烛油,於是就在这发出微弱光亮的
灯下,专心地看书。等到疲劳和寒冷压倒他时,他才钻进被窝
睡觉。
高斯的算术老师本来是对学生态度不好,他常认为自己在
穷乡僻壤教书是怀才不遇,现在发现了「神童」,他是很高兴
。但是很快他就感到惭愧,觉得自己懂的数学不多,不能对高
斯有什麼帮助。
他去城里自掏腰包买了一本数学书送给高斯,高斯很高兴
和比他大差不多十岁的老师的助手一起学习这本书。这个小孩
和那个少年建立起深厚的感情,他们花许多时间讨论这里面的
东西。
高斯在十一岁的时候就发现了二项式定理 ( x + y )n的一般
情形,这里 n可以是正负整数或正负分数。当他还是一个小学生
时就对无穷的问题注意了。
有一天高斯在走回家时,一面走一面全神贯注地看书,不
知不觉走进了布伦斯维克 ( Braunschweig ) 宫的庭园,这时布伦
斯维克公爵夫人看到这个小孩那麼喜欢读书,於是就和他交谈
,她发现他完全明白所读的书的深奥内容。
公爵夫人回去报告给公爵知道,公爵也听说过在他所管辖
的领地有一个聪明小孩的故事,於是就派人把高斯叫去宫殿。
费迪南公爵 ( Duke Ferdinand ) 很喜欢这个害羞的孩子,也
赏识他的才能,於是决定给他经济援助,让他有机会受高深教
育,费迪南公爵对高斯的照顾是有利的,不然高斯的父亲是反
对孩子读太多书,他总认为工作赚钱比去做什麼数学研究是更
有用些,那高斯又怎麼会成材呢?
高斯的学校生涯
在费迪南公爵的善意帮助下,十五岁的高斯进入一间著名
的学院(程度相当於高中和大学之间)。在那里他学习了古代
和现代语言,同时也开始对高等数学作研究。
他专心阅读牛顿、欧拉、拉格朗日这些欧洲著名数学家的
作品。他对牛顿的工作特别钦佩,并很快地掌握了牛顿的微积
分理论。
1795年10月他离开家乡的学院到哥庭根 ( Gottingen )去念大
学。哥庭根大学在德国很有名,它的丰富数学藏书吸引了高斯
。许多外国学生也到那里学习语言、神学、法律或医学。这是
一个学术风气很浓厚的城市。
高斯这时候不知道要读什麼系,语言系呢还是数学系?如
果以实用观点来看,学数学以后找生活是不大容易的。
可是在他十八岁的前夕,现在数学上的一个新发现使他决
定终生研究数学。这发现在数学史上是很重要的。
我们知道当 n ≥ 3 时,正 n 边形是指那些每一边都相等,
内角也一样的 n 边多边形。
希腊的数学家早知道用圆规和没有刻度的直尺画出正三、
四、五、十五边形。但是在这之后的二千多年以来没有人知道
怎麼用直尺和圆规构造正十一边、十三边、十四边、十七边多
边形。
还不到十八岁的高斯发现了:一个正 n 边形可以用直尺和
圆规画出当且仅当 n 是底下两种形式之一:
k= 0,1,2, ...
十七世纪时法国数学家费马 ( Fermat ) 以为公式
在 k = 0, 1, 2, 3, ....给出素数。(事实上,目前只确定 F0,F1,F2,F4
是质数,F5不是)。
高斯用代数方法解决了二千多年来的几何难题,而且找到
正十七边形的直尺与圆规的作法。他是那麼的兴奋,因此决定
一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上
一个正十七边形,以纪念他少年时最重要的数学发现。
1799年高斯呈上他的博士论文,这论文证明了代数一个重
要的定理:任何一元代数方程都有根。这结果数学上称为”代
数基本定理”。
事实上在高斯之间有许多数学家认为已给出了这个结果的
证明,可是没有一个证是严密的,高斯是第一个数学家给出严
密无误的证明,高斯认为这个定理是很重要的,在他一生中给
了一***四个不同的证明。高斯没有钱印刷他的学位论文,还好
费迪南公爵给他钱印刷。
二十岁时高斯在他的日记上写,他有许多数学想法出现在
脑海中,由於时间不定,因此只能记录一小部份。幸亏他把研
究的成果写成一本叫<算学研究>,并且在二十四岁时出版,
这书是用拉丁文写,原来有八章,由於钱不够,只好印七章,
这书可以说是数论第一本有系统的著作,高斯第一次介绍”同
余”这个概念。
智斗猪八戒
话说唐僧师徒西天取经归来,来到郭家村,受到村民的热烈欢迎,大家都把他们当作除魔降妖的大英雄,不仅与他们合影留念,还拉他们到家里作客。
面对村民的盛情款待,师徒们觉得过意不去,一有机会就帮助他们收割庄稼,耕田耙地。开始几天猪八戒还挺卖力气,可过不了几天,好吃懒做的坏毛病又犯了。他觉得这样干活太辛苦了,师傅多舒服,只管坐着讲经念佛就什么都有了。其实师傅也没什么了不起的,要不是猴哥凭着他的火眼金睛和一身的本领,师傅恐怕连西天都去不了,更别说取经了。要是我也有这么一个徒弟,也能有一番作为,到那时,哈哈,我就可以享清福了。
于是八戒就开始张落起这件事来,没几天就召收了9个徒弟,他给他们取名:小一戒、小二戒…小九戒。按理说,现在八戒应该潜心修炼,专心教导徒弟了。可是他仍然恶习不改,经常带着徒弟出去蹭吃蹭喝,吃得老百姓叫苦不迭。老百姓想着他们曾经为大家做的好事,谁也不好意思到悟空那里告状。就这样,八戒们更是有恃无恐,大开吃戒,一顿要吃掉五、六百个馒头,老百姓被他们吃得快揭不开锅了。
邻村有个叫灵芝的姑娘,她聪明伶俐,为人善良,经常用自己的智慧巧斗恶人。她听了这件事后,决定惩治一下八戒们。她来到郭家村,开了一个饭铺,八戒们闻讯赶来,灵芝姑娘假装惊喜地说:“悟能师傅,你能到我的饭铺,真是太荣幸了。以后你们就到我这儿来吃饭,不要到别的地方去了。”她停了一下说:“这儿有张圆桌,专门为你们准备的,你们十位每次都按不同的次序入座,等你们把所有的次序都坐完了,我就免费提供你们饭菜。但在此之前,你们每吃一顿饭,都必须为村里的一户村民做一件好事,你们看怎么样?”八戒们一听这诱人的建议,兴奋得不得了,连声说好。于是他们每次都按约定的条件来吃饭,并记下入座次序。这样过了几年,新的次序仍然层出不穷,八戒百思不得其解,只好去向悟空请教。悟空听了不禁哈哈大笑起来,说:“你这呆子,这么简单的帐都算不过来,还想去沾便宜,你们是永远也吃不到这顿免费饭菜的。”“难道我们吃二、三十年,还吃不到吗?”悟空说:“那我就给你算算这笔帐吧。我们先从简单的数算起。假设是三个人吃饭,我们先给他们编上1、2、3的序号,排列的次序就有6种,即123,132,213,231,312,321。如果是四个人吃钣,第一个人坐着不动,其他三个人的座位就要变换六次,当四个人都轮流作为第一个人坐着不动时,总的排列次序就是6×4=24种。按就样的方法,可以推算出:五个人去吃饭,排列的次序就有24×5=120种……10个人去吃钣就会有3628800种不同的排列次序。因为每天要吃3顿钣,用3628800÷3就可以算出要吃的天数:1209600天,也就是将近3320年。你们想想,你们能吃到这顿免费钣菜吗?”
经悟空这么一算,八戒顿时明白了灵芝姑娘的用意,不禁羞愧万分。从此以后,八戒经常带着徙弟们帮村民们干活。他们又重新赢得了人们的喜欢。
取胜的对策
战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。但是田忌采纳了门客孙膑(著名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
下面有一个两人做的游戏:轮流报数,报出的数不能超过8(也不能是0),把两面三刀个人报出的数连加起来,谁报数后使和为88,谁就获胜。如果让你先报数,你第一次应该报几才能一定获胜?
分析:因为每人每次至少报1,最多报8,所以当某人报数之后,另一人必能找到一个数,使此数与某所报的数之和为9。依照规则,谁报数后使和为88,谁就获胜,于是可推知,谁报数后和为79(=88-9),谁就获胜。88=9×9+7,依次类推,谁报数后使和为16,谁就获胜。进一步,谁先报7,谁就获胜。于是得出先报者的取胜对策为:先报7,以后若对方报K(1≤K≤8),你就报(9-K)。这样,当你报第10个数的时候,就会取得胜利。
蜗牛何时爬上井?
一只蜗牛不小心掉进了一口枯井里。它趴在井底哭了起来。一只癞(
lai)蛤蟆爬过来,瓮声瓮气的对蜗牛说:“别哭了,小兄弟!哭也没用,这井壁太高了,掉到这里就只能在这生活了。我已经在这里过了多年了,很久没有看到过太阳,就更别提想吃天鹅肉了!”蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀,我决不能像它那样生活在又黑又冷的井底里!”蜗牛对癞蛤蟆说: “癞大叔,我不能生活在这里,我一定要爬上去!请问这口井有多深?”“哈哈哈……,真是笑话!这井有10米深,你小小的年纪,又背负着这么重的壳,怎么能爬上去呢?”“我不怕苦、不怕累,每天爬一段,总能爬出去!”第二天,蜗牛吃得饱饱的,喝足了水,就开始顺着井壁往上爬了。它不停的爬呀,到了傍晚终于爬了5米。蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就能爬上去。”想着想着,它不知不觉地睡着了。早上,蜗牛被一阵呼噜声吵醒了。一看原来是癞大叔还在睡觉。它心里一惊:“我怎么离井底这么近?”原来,蜗牛睡着以后从井壁上滑下来4米。蜗牛叹了一口气,咬紧牙又开始往上爬。到了傍晚又往上爬了5米,可是晚上蜗牛又滑下4米。爬呀爬,最后坚强地蜗牛终于爬上了井台。小朋友你能猜出来,蜗牛需要用几天时间就能爬上井台吗?