穿墙的概念,放在现实的生活当中真是匪夷所思,根本就不可能的嘛。
那在量子力学中,就真的可以么?
这个穿墙的效果在量子力学中有一个专业的说法,就是隧穿效应。什么是隧穿效应呢?
简单地说,量子隧穿效应是指微观粒子可以穿过一堵比自己还高的墙。这是一种量子效应,用经典的观点可能很难理解。但结合量子力学中波动性的观点,用薛定谔方程可以很容易地解出来。
为了方便了解,我们可以先做一种假设,如果面前有一堵墙,我们想翻墙而过,必须具有足够的能量跳过去。如果能量不够,我们是绝不可能出现在墙的另一面的。但在量子世界中,即使能量不够,我们也可以穿墙而过(而不是跃墙而过),这就是量子隧穿现象。当然这里的'我们'不能是宏观的物体,而是微观粒子。因为宏观物体隧穿的概率实在太小了,以致于根本不可能观察到。
量子隧穿的发现
量子隧穿其实是从研究放射性的过程中提出来的。
1896年,法国物理学家贝克勒尔从铀的研究中发现了铀的放射性,接着居里夫妇也参与了这项研究,后来三人还因此一块获得了1903年的诺贝尔物理学奖。
关于放射性当时一直有一个疑问。以最常见的α衰变来看,是从重原子核中放射出α粒子,即氦原子核。我们知道,原子核的核子(质子或中子)之间是通过强相互作用联系在一起的,核子怎么会挣脱强大的强相互作用逃逸出来呢?
到了20世纪,量子力学发展之后,物理学家逐渐认识到了微观粒子存在的不确定性和波粒二象性,为放射性的解释奠定了基础。1927年,洪特在计算双势阱的基态问题时首先注意到了隧穿现象。1928年,美国物理学家伽莫夫和另外两个科学家分别独立地发展了阿尔法衰变的理论解释。他们通过解方势垒的薛定谔方程,得出了粒子的隧穿概率,并进一步建立了衰变过程中发射出来的粒子能量和半衰期之间的关系。
后来在一次伽莫夫的报告上,玻恩意识到了隧穿现象的普遍性。他认为这种现象可能并不局限于核物理学,而是量子力学中一种比较普遍的现象。逐渐地,人们发现了各种各样的量子隧穿现象。著名的约瑟夫森结就是利用超导电子的隧穿过程制作而成的。
撞墙与量子隧穿现象
虽说量子隧穿具有普遍性,但这只是相对于微观世界来说的。而对于宏观世界的撞墙,量子隧穿就不适用了。因为宏观世界上就没有产生量子隧穿现象所需要的条件,就是一个高低势垒的产生、海森堡不确定性等等。
简单说,量子隧穿并不适用于穿墙这件事上。